
Welcome to

ADVANCED GRAPHICS 2022/2023

𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2022 - February 2023

Lecture 1 - “Introduction”

Welcome!

Today’s Agenda:

▪ Advanced Graphics

▪ Recap: Ray Tracing

▪ Assignment 1

Website

http://www.cs.uu.nl/docs/vakken/magr

▪ Downloads, news, slides, deadlines, links.
▪ Main source of information!
▪ Includes complex weekly room allocation.

Please check Teams for operational comms.

INFOMAGR

Advanced Graphics – Introduction 4

Abstract

In this course, we explore Physically Based Rendering
(PBR), with a focus on interactivity.

At the end of this course, you will have a solid theoretical
understanding of efficient physically based light transport
using ray tracing and stochastic evaluation of the
Rendering Equation (so: no rasterization, sorry).

You will also have a good understanding of acceleration
structures for fast ray/scene intersection for static and
dynamic scenes.

You will have hands-on experience with algorithms for
efficient realistic rendering of static and dynamic scenes
using ray tracing on CPU and GPU.

INFOMAGR

Advanced Graphics – Introduction 5

Abstract

In this course, we explore physically based rendering, with
a focus on interactivity.

At the end of this course, you will have a solid theoretical
understanding of efficient physically based light transport
using ray tracing and stochastic evaluation of the
Rendering Equation (so: no rasterization, sorry).

You will also have a good understanding of acceleration
structures for fast ray/scene intersection for static and
dynamic scenes.

You will have hands-on experience with algorithms for
efficient realistic rendering of static and dynamic scenes
using ray tracing on CPU and GPU.

INFOMAGR

Advanced Graphics – Introduction 6

Concrete / informal:

1. You’ll know how a photo-
realistic image is produced

2. You know how to do this
quickly / efficient

3. You have built such a renderer

4. You have built an interactive
ray tracer

5. You know how to do this on
the GPU

6. You got a great score

7. You had fun

Topics

We will cover the following topics:

▪ Ray tracing fundamentals;

▪ Whitted-style ray tracing;

▪ Acceleration structure construction;

▪ Acceleration structure traversal;

▪ Data structures and algorithms for animation;

▪ Stochastic approaches to AA, DOF, soft shadows, … ;

▪ Path tracing;

▪ Variance reduction in path tracing algorithms;

▪ Filtering techniques;

▪ RTX / DXR (hardware options);

▪ State-of-the-art in ray tracing for games;

▪ Various forms of parallelism in ray tracing.

INFOMAGR

Advanced Graphics – Introduction 7

Lectures

16 lectures:
Tuesday 10:00 – 11:45, Thursday 13:15 – 15:00

Working colleges:
Tuesdays 09:00 – 10:00 (1 hour, before the lecture)
Thursdays 15:15 – 17:00 (2 hours, after the lecture)

All lectures are ON CAMPUS and will be recorded.

Slides will be made available, along with recordings.

Attendance is not mandatory, but of course highly recommended.
We move fast; missing a key lecture may be a serious problem.

INFOMAGR

Advanced Graphics – Introduction 8

Literature

Papers and online resources will be supplied during the course.

Slides will be made available after each lecture.

Recommended literature:

Physically Based Rendering – From Theory to Implementation,
Pharr & Humphreys. ISBN-10: 9780128006450.

The 3rd edition is available for free: www.pbr-book.org

INFOMAGR

Advanced Graphics – Introduction 9

Dependencies

It is assumed that you have basic knowledge of
rendering (INFOGR) and associated mathematics.

You also should be a decent programmer; this is
explicitly not a purely theoretical course. You are
expected to verify the theory and experience the good
and the bad.

You can code in C/C++ or C# or Rust or basically any
other Turing-complete language.

INFOMAGR

Advanced Graphics – Introduction 10

Resources

You will develop a ray tracing testbed for assignment 1.
As a starting point, a ‘template’ is available.

However: feel free to use your own framework.

INFOMAGR

Advanced Graphics – Introduction 11

Assignments

1. (weight: 1):
Light transport framework

For this assignment, you prepare a testbed for subsequent
assignments.

2. (weight: 1):
Acceleration structures

In this assignment, you expand your testbed with efficient acceleration structure
construction and traversal. This enables you to run ray tracing in real-time (well…)

3. (weight: 2):
Final assignment

In this assignment, you either implement an interactive path tracer, or a rendering
algorithm you chose, using CPU and/or GPU rendering.

INFOMAGR

Advanced Graphics – Introduction 12

Exam

One final exam at the end of the block.

Materials to study:

▪ Slides
▪ Notes taken during the lectures
▪ Provided literature
▪ Assignments

INFOMAGR

Advanced Graphics – Introduction 13

Grading & Retake

Final grade for assignments 𝑃 = (𝑃1 + 𝑃2 + 2 ∗ 𝑃3) / 4
Final grade for INFOMAGR 𝐺 = (2𝑃 + 𝐸) / 3

Passing criteria:

▪ 𝑃 ≥ 4.50
▪ 𝐸 ≥ 4.50
▪ 𝐺 ≥ 5.50

Repairing your grade using the retake exam or retake assignment:

▪ only if 5.50 > 𝐺 ≥ 4.00
▪ you redo P1 or P2 or P3 or E
▪ this replaces the original P1, P2, P3 or E grade.

INFOMAGR

Advanced Graphics – Introduction 14

Today’s Agenda:

▪ Advanced Graphics

▪ Recap: Ray Tracing

▪ Assignment 1

Ray

A ray is an infinite line with a start point:

𝑃(𝑡) = 𝑂 + 𝑡𝐷, where 𝑡 ≥ 0.

The ray direction 𝐷 is usually normalized:
this way, 𝑡 becomes a distance along the ray.

Recap

Advanced Graphics – Introduction 16

Scene

The scene consists of a number of primitives:

▪ Spheres
▪ Planes
▪ Triangles

...or anything for which we can calculate the intersection with a ray.

We also need:

▪ A camera (position, direction, FOV, focal distance, aperture size)
▪ Light sources

Recap

Advanced Graphics – Introduction 17

Recap

Ray Tracing

World space

▪ Geometry
▪ Eye
▪ Screen plane
▪ Screen pixels
▪ Primary rays
▪ Intersections
▪ Point light
▪ Shadow rays

Light transport

▪ Extension rays

Light transport

Advanced Graphics – Introduction 18

Ray setup

A ray is initially shot through a pixel on the screen plane.
The screen plane is defined in world space, e.g.:

Camera position: 𝐸 = (0,0,0)

View direction: 𝑉 = (0,0,1)

Screen center: 𝐶 = 𝐸 + 𝑑𝑉
Screen corners: 𝑃0 = 𝐶 + −1, −1,0 , 𝑃1 = 𝐶 + 1, −1,0 , 𝑃2 = 𝐶 + (−1,1,0)

From here:

▪ Change FOV by altering 𝑑;
▪ Transform camera by multiplying E, 𝑃0, 𝑃1, 𝑃2 with a camera matrix.

Recap

Advanced Graphics – Introduction 19

Ray setup

Point on the screen:

𝑃 𝑢, 𝑣 = 𝑃0 + 𝑢 𝑃1 − 𝑃0 + 𝑣(𝑃2 − 𝑃0)
𝑢, 𝑣 ∈ [0,1]

Ray direction (normalized):

𝐷 =
𝑃 𝑢, 𝑣 − 𝐸

∥ 𝑃 𝑢, 𝑣 − 𝐸 ∥

Ray origin:

𝑂 = 𝐸

Recap

𝑃0

𝑃1

𝑃2

𝐸

u

v

Advanced Graphics – Introduction 20

Ray setup

Alternatives:

▪ Taking into account HMD lens distortion

Recap

Advanced Graphics – Introduction 21

Ray setup

Alternatives:

▪ Taking into account HMD lens distortion
▪ Fisheye lens

Recap

Advanced Graphics – Introduction 26

Ray setup

Alternatives:

▪ Taking into account HMD lens distortion
▪ Fisheye lens
▪ Complex lens system

Recap

Advanced Graphics – Introduction 27

Ray Intersection

Given a ray P(𝑡) = 𝑂 + 𝑡𝐷, we determine the closest
intersection distance 𝑡 by intersecting the ray with
each of the primitives in the scene.

Ray / plane intersection:

Plane: 𝑃 ∙ 𝑁 + 𝑑 = 0

Ray: 𝑃(𝑡) = 𝑂 + 𝑡𝐷

Substituting for 𝑃(𝑡), we get

𝑂 + 𝑡𝐷 ∙ 𝑁 + 𝑑 = 0

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

𝑃 = 𝑂 + 𝑡𝐷

Recap

𝑃0

𝑃1

𝑃2

𝐸

Advanced Graphics – Introduction 28

Math reminder, dot product:

𝐴 ∙ 𝐵 = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧

𝐴 ∙ 𝐵 = cos 𝜃
𝐴 ∙ 𝐵 is: the length of the

projection of A on B.
𝐴 ∙ 𝐵 is a scalar.

Math notation:

𝑃 is a point, 𝐷 is a vector
𝑡 is a scalar.

Ray Intersection

Ray / sphere intersection:

Sphere: 𝑃 − 𝐶 ∙ 𝑃 − 𝐶 − 𝑟2 = 0

Substituting for 𝑃(𝑡), we get

𝑂 + 𝑡𝐷 − 𝐶 ∙ 𝑂 + 𝑡𝐷 − 𝐶 − 𝑟2 = 0

𝐷 ∙ 𝐷 𝑡2 + 2𝐷 ∙ 𝑂 − 𝐶 𝑡 + (𝑂 − 𝐶)2−𝑟2 = 0

𝑎𝑡2 + 𝑏𝑡 + 𝑐 = 0 → 𝑡 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

𝑎 = 𝐷 ∙ 𝐷

𝑏 = 2𝐷 ∙ (𝑂 − 𝐶)
𝑐 = 𝑂 − 𝐶 ∙ 𝑂 − 𝐶 − 𝑟2

Recap

𝐸

Negative:
no intersections

Advanced Graphics – Introduction 29

𝑃0

𝑃1

𝑃2

Ray Intersection

Efficient ray / sphere intersection:

void Sphere::IntersectSphere(Ray ray)
{

vec3 C = this.pos - ray.O;
float t = dot(C, ray.D);
vec3 Q = C - t * ray.D;
float p2 = dot(Q, Q);
if (p2 > sphere.r2) return; // r2 = r * r
t -= sqrt(sphere.r2 – p2);
if ((t < ray.t) && (t > 0)) ray.t = t;

}

Note:

This only works for rays that start outside the sphere.

Recap

Advanced Graphics – Introduction 30

O

𝐷

Ԧ𝐶

t

𝑄

𝑝2

Observations

Ray tracing is a point sampling process:

▪ we may miss small details;
▪ aliasing will occur.

Ray tracing is a visibility algorithm :

▪ For each pixel, we find the nearest object (which occludes objects farther away).

Recap

Advanced Graphics – Introduction 31

Observations

Note: rasterization (Painter’s or z-buffer) is also a visibility algorithm.

Rasterization:

▪ loop over objects / primitives;
▪ per primitive: loop over pixels.

Ray tracing:

▪ loop over pixels;
▪ per pixel: loop over objects / primitives.

Recap

Advanced Graphics – Introduction 32

Today’s Agenda:

▪ Advanced Graphics

▪ Recap: Ray Tracing

▪ Assignment 1

Ray Tracing Testbed

Basic functionality of a ray tracer:

1. Calculate a color for each pixel on the screen
2. Do so using rays:

▪ Start a ray at the camera location
▪ Figure out where the pixel is in world space
▪ Extend the (normalized) ray through the pixel
▪ Find the nearest intersection (try them all)
▪ Do fancy things at the nearest intersection.

Advanced Graphics – Introduction 34

Assignment 1

Ray Tracing Testbed

Implement an experimentation framework for ray tracing. Ingredients:

Scene

Primitives: spheres, planes, triangles
I/O (e.g., obj loader)
Intersection
Materials: diffuse color, diffuse / specular / dielectric, absorption

Camera

Position, target, FOV
Ray generation

Ray

Renderer

Whitted-style

User interface

Input handling
Presentation

Advanced Graphics – Introduction 37

Assignment 1

Ray Tracing Testbed

Regarding the file loading requirement:

▪ You may want to start with the included hardcoded scene
▪ Don’t build your own OBJ loader, that’s a waste of time
▪ Use assimp or tinyobjloader (C++) or find a lib if you’re using C#

http://www.stefangordon.com/parsing-wavefront-obj-files-in-c/
http://www.rexcardan.com/2014/10/read-obj-file-in-c-in-just-10-lines-of-code/
https://github.com/ChrisJansson/ObjLoader

▪ Start with small scenes; minimize your development cycle.

Advanced Graphics – Introduction 38

Assignment 1

http://www.stefangordon.com/parsing-wavefront-obj-files-in-c/
http://www.rexcardan.com/2014/10/read-obj-file-in-c-in-just-10-lines-of-code/
https://github.com/ChrisJansson/ObjLoader

Ray Tracing Testbed

Intersecting triangles:

An easy to implement and quite efficient algorithm is:

Fast, Minimum Storage Ray/Triangle Intersection, Möller & Trumbore, 1997.

…which is explained in elaborate detail by scratchapixel.com:

http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-
triangle-intersection

Advanced Graphics – Introduction 39

Assignment 1

http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection

Today’s Agenda:

▪ Advanced Graphics

▪ Recap: Ray Tracing

▪ Assignment 1

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2022 – February 2023

END of “Introduction”
next lecture: “Whitted-style Ray Tracing”

