o
L
>,
<

elcome tg

INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

at a
it Tr =
r) R =

V4

= * diffuse

e Lecture 1 - “Introduction

fl + refr)) &

= true;

4 Welcome!

survive = SurvivalProbabi
estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
ot cosThetaOut = dot(N, L

A §
sy

E * ((weight * cosThetaOut) / di -
<G

andom walk - done properl /40%

2 [.
rive) &
: E b |
3t3 brdf = SampleDiffuse(diffuse, N ‘p"
irvive; =

pdf; R y
1 = E * brdf * (dot(N, R) / pdf); a3y

-ion = true:

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Today’s Agenda:
» Advanced Graphics
= Recap: Ray Tracing

= Assignment 1

Advanced Graphics - Introduction 4

INFOMAGR

Website

http://www.cs.uu.nl/docs/vakken/magr

= Downloads, news, slides, deadlines, links. e
‘s = Main source of information!
el = [ncludes complex weekly room allocation.
* diffuse

1+ refe)) Please check Teams for operational comms.

), N)
efl * E * diffuse
= true;

\ ' \ = < All teams
{AXDEPTH) .

survive = SurvivalProbal
estimaticn d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

- L .I
1 -
: f] P
v = true; ’

it brdfPdf = EvaluateDiffuse
at3 factor = diffuse * INVPI
at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut di -_ .:. ADVG RZ 022

andom walk - done proper
rive)

3t3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Assignments

Advanced Graphics - Introduction

INFOMAGR

at a
it Tr = 1
r) R = (D

= * diffuse
= true;

fl + refr)) &

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabi
estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

3t brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI:

at weight = Mis2(directPdf, brdf
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse(diffuse, N

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Abstract

In this course, we explore Physically Based Rendering
(PBR), with a focus on interactivity.

At the end of this course, you will have a solid theoretical
understanding of efficient physically based light transport
using ray tracing and stochastic evaluation of the
Rendering Equation (so: no rasterization, sorry).

You will also have a good understanding of acceleration
structures for fast ray/scene intersection for static and
dynamic scenes.

You will have hands-on experience with algorithms for
efficient realistic rendering of static and dynamic scenes
using ray tracing on CPU and GPU.

Advanced Graphics - Introduction

INFOMAGR

3)

at a = nt
at Tr = 1
r) R = (D

= * diffuse
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doi

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:z

v = true;

it brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut)

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, ri

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Abstract

In this course, we explore physically based rendering, with
a focus on interactivity.

At the end of this course, you will have a solid theoretical
understanding of efficient physically based light transport
using ray tracing and stochastic evaluation of the
Rendering Equation (so: no rasterization, sorry).

You will also have a good understanding of acceleration
structures for fast ray/scene intersection for static and
dynamic scenes.

You will have hands-on experience with algorithms for
efficient realistic rendering of static and dynamic scenes
using ray tracing on CPU and GPU.

Concrete / informal:

1.

You’ll know how a photo-
realistic image is produced

You know how to do this
quickly / efficient

You have built such a renderer

You have built an interactive
ray tracer

You know how to do this on
the GPU

You got a great score

You had fun

Advanced Graphics - Introduction 7

INFOMAGR

Topics

We will cover the following topics:

1t = nt

>) = Ray tracing fundamentals;

i ot < nc, = Whitted-style ray tracing;

T) R = (D * nr

xdiruse; = Acceleration structure construction;

= Acceleration structure traversal;

fl + refr)) && (dept

. M) = Data structures and algorithms for animation;

efl * E * diffuse;
= true;

= Stochastic approachesto AA, DOF, soft shadows, ...;

\AXDEPTH)

;urv%ve = Survzv?lero!-:abilL: u Path traCing;

‘ijtlmatlon - doing 1 ;))) .

e = = Variance reduction in path tracing algorithms;
e 5 Fllterlng teChniqueS;

at3 factor = diffuse * INVPI;
toment -1, . ® RTX / DXR (hardware options);

E * ((weight * cosThetaOut) / directr

LB e TR = State-of-the-artin ray tracing for games;
s brdt - semprevirrusel aiie, v Various forms of parallelism in ray tracing.

pdf;
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Introduction

I N FO MAG R Choose your audio and video settings

Lectures
16 lectures: =
Tuesday 10:00 — 11:45, Thursday 13:15 - 15:00)
Working colleges: oo
i Tuesdays 09:00 - 10:00 (7 hour; before the lecture) (@ O @® G rcvicandspeskers
s Thursdays 15:15 - 17:00 (2 hours, after the lecture)
o) e+ airrue All lectures are ON CAMPUS and will be recorded.
AAXDEPTH)
,fdl h Slides will be made available, along with recordings.
+ brdinat = Evaustevi e Attendance is not mandatory, but of course highly recommended.

e e st L B We move fast; missing a key lecture may be a serious problem.

E * ((weight * cosThetaOut)

direc
ST,
andom walk - done properly |

rive) é’.
3t3 brdf = SampleDiffuse(diffuse, N, r E’\
irvive; =

pdf: N4

H
1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Advanced Graphics - Introduction

INFOMAGR

), N
)
at a = nt

it Tr = 1
't) R = (D

= * diffuse;
= true;

=fl + refr)) && (deg

), N)
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Literature

Papers and online resources will be supplied during the course.

Slides will be made available after each lecture.
Recommended literature:
Physically Based Rendering - From Theory to Implementation,

Pharr & Humphreys. ISBN-10: 9780128006450.

The 3™ edition is available for free: www.pbr-book.org

Copyrighted Material

Matt Pharr Greg Humphreys

PHYSICALLY BASED
RENDERING

From Theory to mpllf’ﬁéhtation

Second Edition N) 8

Advanced Graphics - Introduction

10

INFOMAGR

1T

), N

)

at a = nt

at Tr = 1
) R =/(D

= * diffuse:

= true;

fl + refr)) 22 (d

), N)

efl * E * diffuse

= true;

1AXDEPTH)

survive = SurvivalProbabil

estimation - doi

if;

-adiance = Samplelight(&ranc
2.x + radiance.y + radiance.z

v = true;

at brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut)

andom walk - done properly, cl

rive)

3t3 brdf = SampleDiffuse(diffuse, N, r

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Dependencies

[t is assumed that you have basic knowledge of
rendering (INFOGR) and associated mathematics.

You also should be a decent programmer; this is
explicitly not a purely theoretical course. You are
expected to verify the theory and experience the good
and the bad.

You can code in C/C++ or C# or Rust or basically any
other Turing-complete language.

Unfortunately

AR

® . noonecan be told

what the matrix is

You have to see it

for yourself

5)
= A
v\.

Advanced Graphics - Introduction 11

INFOMAGR

Resources

You will develop a ray tracing testbed for assignment 1.
As a starting point, a ‘template’is available.

= nt

352t = 1
3o N EYs

)

at a = nt - nc
3t Tr = 1 -

r) R = (D nn

= * diffuse:

= true;

fl + refr)) && (deptl
), N)

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabili
estimation - doing it
if;

-adiance = SampleLight(&ra
2.x + radiance.y + radiance

v = true;
3t brdfPdf = EvaluateDiffuse)
at3 factor = diffuse * INVPI;

3t weight = Mis2(directPdf, brdfPdf

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, closel

ive) However: feel free to use your own framework.

3t3 brdf = SampleDiffuse(diffuse, N, r1,
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Introduction 12

INFOMAGR

Assignments

1. (weight: 1):

| | W Wa gy
I Light transport framework 4 & I‘J(J l{]3 l
OUR ASSIGNMENT

), N);

- For this assignment, you prepare a testbed for subsequent

e T2 - G assignments.

'r) R = (D

= * diffuse:
= true;

2. (weight: 1):
Acceleration structures

fl + refr)) && (dept

), N);
efl * E * diffuse;
= true;

In this assignment, you expand your testbed with efficient acceleration structure
construction and traversal. This enables you to run ray tracing in real-time (well...)

\AXDEPTH)

survive = SurvivalProbabilit

estimation - doing it

if;

"adiance = SampleLight(&rand

2.x + radiance.y + radiance.z) 3

(weight: 2):
€ brafrat = EvalusteDifuse(L, 1 Final assignment

at3 factor = diffuse * INVPI;
it weight = Mis2(directPdf, brdfPdf
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaout) / directs In this assignment, you either implement an interactive path tracer; or a rendering
e T algorithm you chose, using CPU and/or GPU rendering.

3t3 brdf = SampleDiffuse(diffuse, N, rl,
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Introduction

13

INFOMAGR

at a
it Tr =
) R = (D

= * diffuse
= true;

fl + refr)) &

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbab
estimation d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse(diffuse, N

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):

-ion = true:

Exam

One final exam at the end of the block.

Materials to study:

= Slides

= Notes taken during the lectures
= Provided literature

" Assignments

|‘ - 3 \ A
—
pr—
—]
—_—

R—
_— .7
e

———
|

PRN—)
L

&)

> b =<

8 3
2 >
& TARR YN

Advanced Graphics - Introduction

INFOMAGR

Grading & Retake

Final grade for assignments P = (P1 + P2 + 2 * P3) /4
Final grade for INFOMAGR G = (2P + E) /3

), N
>)

e e Passing criteria:

at Tr = 1
) R =/(D

= * diffuse

= P>450
;fl+ refr)) && - E 2 450
féfq *)‘;E * diffuse u G 2 550

= true;

AAXDEPTH)

Repairing your grade using the retake exam or retake assignment:

survive = SurvivalProbabil

’:jtivraticn - doi

~adiance = SampleLight(&ra d

2.x + radiance.y + radiance.: | Onljz lf 5_50 > G 2 4_00
e e orPzorP3orE

s e = this replaces the original P1, P2, P3 or E grade.

E * ((weight * cosThetaOut) / direc

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Today’s Agenda:
» Advanced Graphics
= Recap: Ray Tracing

= Assignment 1

Advanced Graphics - Introduction 16

Recap

Ray

A ray is an infinite line with a start point:

1t = nt
352% =

A P(t) =0 + tD, where t = 0.
;:)ng D . . A : 1 \’
The ray direction D is usually normalized:

this way, t becomes a distance along the ray.

= * diffuse;
= true;

of1 + refr)) && (dept

), N)
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:

-ion = true:

Advanced Graphics - Introduction 17

Recap

Scene

The scene consists of a number of primitives:

1<

), N

= Spheres

tn o = Planes

SRR = Triangles

=1

14 refe)) 50 (o ..or anything for which we can calculate the intersection with a ray.
it e dittuse

- We also need:

1AXDEPTH)

1fl | = A camera (position, direction, FOV, focal distance, aperture size)
e P i = Lightsources

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfr
3t cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / direc

.
andom walk - done properly, cl m
.

rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;
pdf; X 31))7
1 = E * brdf * (dot(N, R) / pdf): Uyl

-ion = true:

Advanced Graphics - Introduction 18

Recap

Ray Tracing

World space

1t = nt
352% =

)

) 1 = Geometry

o - = Eye

DRe G = Screen plane
e = Screen pixels
2+ refe)) 88 (dep * Primary rays
iR e - giruse; = [Intersections
" = Point light

. i

survive = SurvivalProbabilit
estimation - doing it
if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L. |

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, clo

rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;

pdf

-ion = true:

1 = E * brdf * (dot(N, R) / pdf);

Shadow rays

Light transport

Extension rays

Light transport

Advanced Graphics - Introduction

19

Recap

Ray setup

A ray is initially shot through a pixel on the screen plane.
The screen plane is defined in world space, e.g.:

), N
>)

Camera position: E = (0,0,0)

g - View direction:
Screen center:
RS Screen corners:
féfq *)‘;E * diffuse

From here:
\AXDEPTH)

if;

V = (0,0,1)
C=E+dV
P,=C+(-1,-1,0), P,=C+(1,-1,0), P, =C + (—1,1,0)

e e e = Change FOV by altering d;

o D T = Transform camera by multiplying E, Py, P;, P, with a camera matrix.

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Advanced Graphics - Introduction

Al

Recap

), N
)
at a = nt

it Tr = 1
't) R = (D

= * diffuse;

= true;

of1 + refr)) && (deg

), N)

~efl * E * diffuse;

= true;

AAXDEPTH)

survive = SurvivalProbabilit

estimation - doing it

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfpds
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl

rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:

-ion = true:

Ray setup

Point on the screen:

P(u,v) = Py + u(P; — Py) + v(P, — Py)
u,v € [0,1]

Ray direction (normalized):

l_j— P(u,v)_E
I P(u,v) —E |

Ray origin:

O=E

Advanced Graphics - Introduction 21

Recap

Ray setup
Alternatives:

= Takinginto account HMD lens distortion

at a
at Tr
'r) R = (D

* diffuse
= true;

fl + refr)

), N)
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProba
estimaticn d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut

View through lens
ive) (pincushion distortion)

3t3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

andom walk - done proper

Barrel distortion

Advanced Graphics - Introduction A

Recap

Ray setup

e Alternatives:

= = inside
1t = nt e
352t = 1.67

0 = Takinginto account HMD lens distortion

Rl e i, = Fisheye lens
it Tr =1 - (RO
r) R = (D * nnt

= * diffuse;
= true;

fl + refr)) 8& (depth

), N)
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability
estimation - doing it prop

if;

-adiance = SampleLight(&rand, 1, -
2.x + radiance.y + radiance.z)

v = true;

3t brdfPdf = EvaluateDiffuse(L. 11

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfPdf

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPds

andom walk - done properly, closely ¥
rive)

]

3t3 brdf = SampleDiffuse(diffuse, N, r1, 2
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf):

-i0n = true:

Advanced Graphics - Introduction 27

Recap

Ray setup

R =f.Tan(Theta)

Alternatives:

= Takinginto account HMD lens distortion o B
- = Fisheye lens

Diaphragme d'ouverture 0 10 20 30 40 50 60

at T
AR § Aperture Stop Theta (°)
= Complexlens system / A

-V-t’d‘lf?u;e f 0 7 Format 24 x 36 mm
= true; 24 x 36 mm Frame
' ¥
Eh refr) ALPP = 36.49 mm
), N)
efl * E * diffuse
= true; ,g

E

&
AAXDEPTH) =

<
survive = SurvivalProba Ligne de déplacement de la pupille d’entrée
et imation 4 Shift Line of Entrance Pupil
I3 10 20 30 40 50 60

Nikkor 15 mm /5.6

Theta (°)

"adiance = Samplelight
2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
ot cosThetaOut = dot(N, L

E * ((weight * cosThetaOut

andom walk - done proper g
rive) ‘?' '}
3 <
: ; ; + N v
3t3 brdf = SampleDiffuse(diffuse, N) Y{
rvive; = N
pdf; \3 bi \ Y
L]« 13>

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

Advanced Graphics - Introduction

28

Recap

), N
>)
at a = nt

at Tr = 1
) R =/(D

= * diffuse
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doi

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:z

v = true;
at brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr

it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

andom walk - done properly
rive)

5t3 brdf = SampleDiffuse(diffuse,

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Ray Intersection

Given aray P(t) = O + tD, we determine the closest
intersection distance t by intersecting the ray with
each of the primitives in the scene.

Ray / plane intersection:

Plane:P-N +d = 0
Ray: P(t) = 0 +tD
Math reminder, dot product:

Substituting for P(t), we get -B = AyB, + A,B, + A,B,

B = cos 6
(0 + tl_)))) N’ +d=0 - B is: the .lengt]]ofthe
o " =G projection of A on B.
t=—(0-N+d)/(D-N) - B is a scalar.
P=0+tD

Math notation:

-
P is a point, D is a vector
t is a scalar.

Advanced Graphics - Introduction

29

Recap

1<

), N

)

at a = nt

at Tr = 1
't) R = (D

= * diffuse:
= true;

f1 + refr)) && (de;

), N);
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabil
estimation - doing it

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

at brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfr
3t cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Ray Intersection

Ray / sphere intersection:

Sphere: (P —-C)-(P—-C)—1%2=0
Substituting for P(t), we get

(0+tD—C)-(0+tD—C)—1%2=0
D-Dt2+2D-(0—C)t+ (0—C)*—r%2=0

b+ 4a2)

at’+bt+c=0 - t= _
2a

- —

=2D-(0=0)
0-0C)-(0-C)—1r?

Negative:
no intersections

a o Q

Advanced Graphics - Introduction

30

Recap

1t = nt
3528 = 1
), N);
)

it ‘a = nt -
it Tr =1 - (F
') R = (D

= * diffuse:

= true;

f1 + refr)) && (dept

), N);

efl * E * diffuse;

= true;

AAXDEPTH)

survive = SurvivalProbabilit

estimation - doing it
if;

"adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

st brdfPdf = EvaluateDiffuse(L. |

at3 factor = diffuse * INVPI;

Ray Intersection

Efficient ray / sphere intersection:

void Sphere::IntersectSphere(Ray ray)

{
vec3 C = this.pos - ray.O;
float t = dot(C, ray.D);
vec3 Q =C - t * ray.D;
float p2 = dot(Q, Q);
if (p2 > sphere.r2) return; // r2 =pr * r

~ t -= sqrt(sphere.r2 - p2);

if ((t < ray.t) & (t > 0)) ray.t

Il
+
e

Note:

1t weight = Mis2(directPdf, brdfrd

it cosThetaOut = dot(N, L);

teosmeout - o v 0 This only works for rays that start outside the sphere.

andom walk - done properly, close

rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl,

irvive;
pdf;

1=é*brdf*(dot(N, R) / pdf);

-ion = true:

Advanced Graphics - Introduction 31

Recap

1<

), N

3)

at a = nt

at Tr = 1
't) R = (D

= * diffuse:

= true;

:fl + refr)) 22 (de

), N)

efl * E * diffuse

= true;

1AXDEPTH)

survive = SurvivalProbabil

estimation - doi

if;

~adiance = SampleLight(&rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

it weight = Mis2(directPdf, brdfr
3t cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl

rive)

3t3 brdf = SampleDiffuse(diffuse, N, rl

irvive;

pdf;

5
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Observations
Ray tracing is a point sampling process:

= we may miss small details;
= aliasing will occur.

Ray tracing is a visibility algorithm:

= For each pixel, we find the nearest object (which occludes objects farther away).

Advanced Graphics - Introduction 32

Recap

Observations

Note: rasterization (Painter’s or z-buffer) is also a visibility algorithm.

Rasterization:
o) R = = Joop over objects / primitives;
= * diffuse 0 oo [
= per primitive: loop over pixels. Image

e+ vty Camera nght Source
A e - aeruse Ray tracing: 8

= true;

View Ray

AAXDEPTH)

survive = SurvivalProbal " loop Over pixels;
S = per pixel: loop over objects / primitives.

"adiance = Samplelight
2.x + radiance.y + radiance

v = true; .
it brdfPdf = EvaluateDiffuse Scene ObJeCt
at3 factor = diffuse * INVPI

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):

E * ((weight * cosThetaOut

andom walk - done proper
rive)

3t3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);
-ion = true:

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Today’s Agenda:
» Advanced Graphics
= Recap: Ray Tracing

= Assignment 1

Advanced Graphics - Introduction 34

Assignment 1

Ray Tracing Testbed
Basic functionality of a ray tracer:

1. Calculate a color for each pixel on the screen

s 2. Do so using rays:

RIS = Start aray at the camera location

e = Figure out where the pixel is in world space

s et = Extend the (normalized) ray through the pixel

e 2 - airrs *= Find the nearest intersection (try them all) _

= Do fancy things at the nearestintersection.

AAXDEPTH) ‘ ? @
ol A4

survive = SurvivalProbal Activity FEEd

estimaticn d

u =

"adiance = Samplelight : a oot -

2.x + radiance.y + radiance o G FI:I‘ requested to 10:17 AM
Join ADVGR2021
v = true;
it brdfPdf = EvaluateDiffuse ves Members
at3 factor = diffuse * INVPI - st —
9 sl requested

at weight = Mis2(directPdf, brdf
at cosThetaOut = dot(N, L):
E * ((weight * cosThetaOut

andom walk - done proper a

rive) Assignments mentioned 0/19 Search for

This team |

Teams

to join INFOGR2020

3t3 brdf = SampleDiffuse(diffuse, N
irvive; E

pdf; Calendar
1 = E * brdf * (dot(N, R) / pdf);
-ion = true: Name

Advanced Graphics - Introduction 37

Assignment 1

Ray Tracing Testbed

Implement an experimentation framework for ray tracing. Ingredients:

1<

NoE

e ut Primitives: spheres, planes, triangles
S I/0 (e.g., obj loader)

-+ diffuse; Intersection

= true;

Materials: diffuse color, diffuse / specular / dielectric, absorption

fl + refr)) && (de

o Camera

‘éfl *lE * diffuse

T Position, target, FOV
WXDEPTH) Ray generation

survive = SurvivalProbabil R
estimation - doing it ay

if;

~adiance = SamplelLight(&ranc

2.x + radiance.y + radiance.z Renderer

v = true; .

t brdfPdf = EvaluateDiffuse(. Wh]tted-sty]e

at3 factor = diffuse * INVPI;
at weight = Mis2(directPdf, brdfr

it cosThetaOut = dot(N, L); User interface

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl Input handllng m

rive) fé(i

; Presentation & |]

3t3 brdf = SampleDiffuse(diffuse, N, ri \I‘ :7
Z

irvive;
pdf; X)))7
1 = E * brdf * (dot(N, R) / pdf): Uyl

-ion = true:

Advanced Graphics - Introduction

38

Assignment 1

Ray Tracing Testbed

Regarding the file loading requirement:

= You may want to start with the included hardcoded scene

oo = Don’t build your own OB] loader, that’s a waste of time

e = Use assimp or tinyobjloader (C++) or find a lib if you're using C#
3;‘FT *)‘;E *vdi;f.w;:

— = Start with small scenes; minimize your development cycle.

survive = SurvivalProbabil
estimation - doi

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse(diffuse, N, r
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

http://www.stefangordon.com/parsing-wavefront-obj-files-in-c/
http://www.rexcardan.com/2014/10/read-obj-file-in-c-in-just-10-lines-of-code/
https://github.com/ChrisJansson/ObjLoader

Advanced Graphics - Introduction 39

Assignment 1

1<

), N

3)

at a = nt

at Tr = 1
'T) R = (D

= * diffuse:

= true;

f1 + refr)) && (de

), N)

efl * E * diffuse

= true;

1AXDEPTH)

survive = SurvivalProbabil

estimation - doi

if;

~adiance = SamplelLight(&ranc
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse(L
at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut)

andom walk - done properly, cl

rive)

3t3 brdf = SampleDiffuse(diffuse, N, ri

irvive;

pdf;

5
1 = E * brdf * (dot(N, R) / pdf);

-ion = true:

Ray Tracing Testbed

Intersecting triangles:

An easy to implement and quite efficient algorithm is:

Fast, Minimum Storage Ray/Triangle Intersection, Moller & Trumbore, 1997.

...which is explained in elaborate detail by scratchapixel.com:

http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection

at Tr = 1
'T) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N)
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight(&ra
2.x + radiance.y + radiance.:z

v = true;

it brdfPdf = EvaluateDiffuse(L

at3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfr
it cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / direc

o

andom walk - done properly
rive)

at3 brdf = SampleDiffuse(diffuse, N
irvive;

pdf;

1 = E * brdf * (dot(N, R) / pdf);:
-ion = true:

Today’s Agenda:
» Advanced Graphics
= Recap: Ray Tracing

= Assignment 1

ive = SurvivalProbab

~adiance = SampleLight(&ra

v = true;

irvive;

INFOMAGR - Advanced Graphics

Jacco Bikker - November 2022 - February 2023

END of “Introduction”

next lecture: “Whitted-style Ray Tracing”

& 2Y
4
> bW =
\» Y
2 Y
h Uyl ﬁ_)/y

