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Today’s Agenda:
» Advanced Graphics
= Recap: Ray Tracing

= Assignment 1



Advanced Graphics - Introduction 4

INFOMAGR

Website
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Abstract

In this course, we explore Physically Based Rendering
(PBR), with a focus on interactivity.

At the end of this course, you will have a solid theoretical
understanding of efficient physically based light transport
using ray tracing and stochastic evaluation of the
Rendering Equation (so: no rasterization, sorry).

You will also have a good understanding of acceleration
structures for fast ray/scene intersection for static and
dynamic scenes.

You will have hands-on experience with algorithms for
efficient realistic rendering of static and dynamic scenes
using ray tracing on CPU and GPU.
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Abstract

In this course, we explore physically based rendering, with
a focus on interactivity.

At the end of this course, you will have a solid theoretical
understanding of efficient physically based light transport
using ray tracing and stochastic evaluation of the
Rendering Equation (so: no rasterization, sorry).

You will also have a good understanding of acceleration
structures for fast ray/scene intersection for static and
dynamic scenes.

You will have hands-on experience with algorithms for
efficient realistic rendering of static and dynamic scenes
using ray tracing on CPU and GPU.

Concrete / informal:

1.

You’ll know how a photo-
realistic image is produced

You know how to do this
quickly / efficient

You have built such a renderer

You have built an interactive
ray tracer

You know how to do this on
the GPU

You got a great score

You had fun
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Topics

We will cover the following topics:
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LB e TR = State-of-the-artin ray tracing for games;
s brdt - semprevirrusel aiie, v Various forms of parallelism in ray tracing.

pdf;
1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:




Advanced Graphics - Introduction

I N FO MAG R Choose your audio and video settings

Lectures
16 lectures: =
Tuesday 10:00 — 11:45, Thursday 13:15 - 15:00 )
Working colleges: oo
i Tuesdays 09:00 - 10:00 (7 hour; before the lecture) (@ O @® G rcvicandspeskers
s Thursdays 15:15 - 17:00 (2 hours, after the lecture)
o) e+ airrue All lectures are ON CAMPUS and will be recorded.
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,fdl h Slides will be made available, along with recordings.
+ brdinat = Evaustevi e Attendance is not mandatory, but of course highly recommended.

e e st L B We move fast; missing a key lecture may be a serious problem.
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Literature

Papers and online resources will be supplied during the course.

Slides will be made available after each lecture.
Recommended literature:
Physically Based Rendering - From Theory to Implementation,

Pharr & Humphreys. ISBN-10: 9780128006450.

The 3™ edition is available for free: www.pbr-book.org

Copyrighted Material

Matt Pharr Greg Humphreys

PHYSICALLY BASED
RENDERING

From Theory to mpllf’ﬁéhtation

Second Edition N ) 8
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Dependencies

[t is assumed that you have basic knowledge of
rendering (INFOGR) and associated mathematics.

You also should be a decent programmer; this is
explicitly not a purely theoretical course. You are
expected to verify the theory and experience the good
and the bad.

You can code in C/C++ or C# or Rust or basically any
other Turing-complete language.

Unfortunately

AR

® . noonecan be told

what the matrix is

You have to see it

for yourself

5 )
= A
v\.
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Resources

You will develop a ray tracing testbed for assignment 1.
As a starting point, a ‘template’is available.

= nt

352t = 1
3o N EYs

)

at a = nt - nc
3t Tr = 1 -

r) R = (D nn

= * diffuse:

= true;

fl + refr)) && (deptl
), N )

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabili
estimation - doing it
if;

-adiance = SampleLight( &ra
2.x + radiance.y + radiance

v = true;
3t brdfPdf = EvaluateDiffuse)
at3 factor = diffuse * INVPI;

3t weight = Mis2( directPdf, brdfPdf

it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, closel

ive) However: feel free to use your own framework.

3t3 brdf = SampleDiffuse( diffuse, N, r1,
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:




Advanced Graphics - Introduction 12

INFOMAGR

Assignments

1. (weight: 1):

| | W Wa gy
I Light transport framework 4 & I‘J( J l{ ]3 l
OUR ASSIGNMENT
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Exam

One final exam at the end of the block.

Materials to study:

= Slides

= Notes taken during the lectures
= Provided literature

" Assignments
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Grading & Retake

Final grade for assignments P = (P1 + P2 + 2 * P3) /4
Final grade for INFOMAGR G = (2P + E) /3
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Today’s Agenda:
» Advanced Graphics
= Recap: Ray Tracing

= Assignment 1
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Ray

A ray is an infinite line with a start point:

1t = nt
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Scene

The scene consists of a number of primitives:

1<
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Ray Tracing

World space

1t = nt
352% =

)
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Shadow rays

Light transport

Extension rays

Light transport
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Ray setup

A ray is initially shot through a pixel on the screen plane.
The screen plane is defined in world space, e.g.:

), N
>)

Camera position: E = (0,0,0)
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Ray setup

Point on the screen:

P(u,v) = Py + u(P; — Py) + v(P, — Py)
u,v € [0,1]

Ray direction (normalized):

l_j— P(u,v)_E
I P(u,v) —E |

Ray origin:

O=E
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Ray setup
Alternatives:

= Takinginto account HMD lens distortion
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Ray setup

e Alternatives:

= = inside
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Ray setup

R =f.Tan(Theta)

Alternatives:

= Takinginto account HMD lens distortion o B
- = Fisheye lens
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), N )
efl * E * diffuse
= true; ,g

E

&
AAXDEPTH) =

<
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Nikkor 15 mm /5.6
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), N
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Ray Intersection

Given aray P(t) = O + tD, we determine the closest
intersection distance t by intersecting the ray with
each of the primitives in the scene.

Ray / plane intersection:

Plane:P-N +d = 0
Ray: P(t) = 0 +tD
Math reminder, dot product:

Substituting for P(t), we get -B = AyB, + A,B, + A,B,

B = cos 6
(0 + tl_))) ) N’ +d=0 - B is: the .lengt]]ofthe
o " =G projection of A on B.
t=—(0-N+d)/(D-N) - B is a scalar.
P=0+tD

Math notation:

-
P is a point, D is a vector
t is a scalar.
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Ray Intersection

Ray / sphere intersection:

Sphere: (P —-C)-(P—-C)—1%2=0
Substituting for P(t), we get

(0+tD—C)-(0+tD—C)—1%2=0
D-Dt2+2D-(0—C)t+ (0—C)*—r%2=0

b+ 4a2)

at’+bt+c=0 - t= _
2a

- —

=2D-(0=0)
0-0C)-(0-C)—1r?

Negative:
no intersections

a o Q
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Ray Intersection

Efficient ray / sphere intersection:

void Sphere::IntersectSphere( Ray ray )

{
vec3 C = this.pos - ray.O;
float t = dot( C, ray.D );
vec3 Q =C - t * ray.D;
float p2 = dot( Q, Q );
if (p2 > sphere.r2) return; // r2 =pr * r

~  t -= sqrt( sphere.r2 - p2);

if ((t < ray.t) & (t > 0)) ray.t

Il
+
e

Note:

1t weight = Mis2( directPdf, brdfrd

it cosThetaOut = dot( N, L );

teosmeout - o v 0 This only works for rays that start outside the sphere.

andom walk - done properly, close

rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl,

irvive;
pdf;

1=é*brdf*(dot( N, R ) / pdf);

-ion = true:
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Observations
Ray tracing is a point sampling process:

= we may miss small details;
= aliasing will occur.

Ray tracing is a visibility algorithm:

= For each pixel, we find the nearest object (which occludes objects farther away).
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Observations

Note: rasterization (Painter’s or z-buffer) is also a visibility algorithm.

Rasterization:
o) R = = Joop over objects / primitives;
= * diffuse 0 oo [
= per primitive: loop over pixels. Image

e+ vty Camera nght Source
A e - aeruse Ray tracing: 8

= true;

View Ray

AAXDEPTH)

survive = SurvivalProbal " loop Over pixels;
S = per pixel: loop over objects / primitives.
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rive)
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Today’s Agenda:
» Advanced Graphics
= Recap: Ray Tracing

= Assignment 1
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Assignment 1

Ray Tracing Testbed
Basic functionality of a ray tracer:

1. Calculate a color for each pixel on the screen

s 2. Do so using rays:

RIS = Start aray at the camera location

e = Figure out where the pixel is in world space

s et = Extend the (normalized) ray through the pixel

e 2 - airrs *= Find the nearest intersection (try them all) _

= Do fancy things at the nearestintersection.

AAXDEPTH) ‘ ? @
ol A4

survive = SurvivalProbal Activity FEEd

estimaticn d

u =

"adiance = Samplelight : a oot -

2.x + radiance.y + radiance o G FI:I‘ requested to 10:17 AM
Join ADVGR2021
v = true;
it brdfPdf = EvaluateDiffuse ves Members
at3 factor = diffuse * INVPI - st —
9 sl requested

at weight = Mis2( directPdf, brdf
at cosThetaOut = dot( N, L ):
E * ((weight * cosThetaOut

andom walk - done proper a

rive) Assignments mentioned 0/19 Search for

This team |

Teams

to join INFOGR2020

3t3 brdf = SampleDiffuse( diffuse, N
irvive; E

pdf; Calendar
1 = E * brdf * (dot( N, R ) / pdf);
-ion = true: Name
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Ray Tracing Testbed

Implement an experimentation framework for ray tracing. Ingredients:

1<

NoE

e ut Primitives: spheres, planes, triangles
S I/0 (e.g., obj loader)

-+ diffuse; Intersection

= true;

Materials: diffuse color, diffuse / specular / dielectric, absorption

fl + refr)) && (de

o Camera

‘éfl *lE * diffuse

T Position, target, FOV
WXDEPTH) Ray generation

survive = SurvivalProbabil R
estimation - doing it ay

if;

~adiance = SamplelLight( &ranc

2.x + radiance.y + radiance.z Renderer

v = true; .

t brdfPdf = EvaluateDiffuse( . Wh]tted-sty]e

at3 factor = diffuse * INVPI;
at weight = Mis2( directPdf, brdfr

it cosThetaOut = dot( N, L ); User interface

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl Input handllng m

rive) fé( i

; Presentation & | ]

3t3 brdf = SampleDiffuse( diffuse, N, ri \I‘ :7
Z

irvive;
pdf; X )))7
1 = E * brdf * (dot( N, R ) / pdf): Uyl

-ion = true:
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Ray Tracing Testbed

Regarding the file loading requirement:

= You may want to start with the included hardcoded scene

oo = Don’t build your own OB] loader, that’s a waste of time

e = Use assimp or tinyobjloader (C++) or find a lib if you're using C#
3;‘FT *)‘;E *vdi;f.w;:

— = Start with small scenes; minimize your development cycle.

survive = SurvivalProbabil
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if;
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rive)
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pdf;

1 = E * brdf * (dot( N, R ) / pdf);:
-ion = true:


http://www.stefangordon.com/parsing-wavefront-obj-files-in-c/
http://www.rexcardan.com/2014/10/read-obj-file-in-c-in-just-10-lines-of-code/
https://github.com/ChrisJansson/ObjLoader

Advanced Graphics - Introduction 39

Assignment 1

1<

), N

3)

at a = nt

at Tr = 1
'T) R = (D

= * diffuse:

= true;

f1 + refr)) && (de

), N )

efl * E * diffuse

= true;

1AXDEPTH)

survive = SurvivalProbabil

estimation - doi

if;

~adiance = SamplelLight( &ranc
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut)

andom walk - done properly, cl

rive)

3t3 brdf = SampleDiffuse( diffuse, N, ri

irvive;

pdf;

5
1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:

Ray Tracing Testbed

Intersecting triangles:

An easy to implement and quite efficient algorithm is:

Fast, Minimum Storage Ray/Triangle Intersection, Moller & Trumbore, 1997.

...which is explained in elaborate detail by scratchapixel.com:


http://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
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END of “Introduction”

next lecture: “Whitted-style Ray Tracing”
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